Optimal replacement policy for safety-related multi-component multi-state systems
نویسندگان
چکیده
* Corresponding author. Tel.: +44 1483 686593; Fax: +44 1483 686581. Email: [email protected] Abstract This paper investigates replacement scheduling for non-repairable safety-related systems (SRS) with multiple components and states. The aim is to determine the cost-minimizing time for replacing SRS while meeting the required safety. Traditionally, such scheduling decisions are made without considering the interaction between the SRS and the production system under protection, the interaction being essential to formulate the expected cost to be minimized. In this paper, the SRS is represented by a non-homogeneous continuous time Markov model, and its state distribution is evaluated with the aid of the universal generating function. Moreover, a structure function of SRS with recursive property is developed to evaluate the state distribution efficiently. These methods form the basis to derive an explicit expression of the expected system cost per unit time, and to determine the optimal time to replace the SRS. The proposed methodology is demonstrated through an illustrative example.
منابع مشابه
A Multi-Stage Single-Machine Replacement Strategy Using Stochastic Dynamic Programming
In this paper, the single machine replacement problem is being modeled into the frameworks of stochastic dynamic programming and control threshold policy, where some properties of the optimal values of the control thresholds are derived. Using these properties and by minimizing a cost function, the optimal values of two control thresholds for the time between productions of two successive nonco...
متن کاملOptimal overhaul–replacement policy for a multi-degraded repairable system sold with warranty
In this research, we study an optimal overhaul–replacement policy of a multi-degraded repairable system sold with a free replacement warranty. In the proposed replacement policy, a maintenance action and failure are dependent on a system degradation level and the system age, and hence the replacement model will provide more effective maintenance decisions. Failure of the system is modeled using...
متن کاملCondition based maintenance optimization for multi-component systems using proportional hazards model
The objective of condition based maintenance (CBM) is typically to determine an optimal maintenance policy to minimize the overall maintenance cost based on condition monitoring information. The existing work reported in the literature only focuses on determining the optimal CBM policy for a single unit. In this paper, we investigate CBM of multi-component systems, where economic dependency exi...
متن کاملOptimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics
In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Rel. Eng. & Sys. Safety
دوره 99 شماره
صفحات -
تاریخ انتشار 2012